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Random multifractals that involve ensemble-averaged partition sums may give rise to negative
dimensions. These models are highly relevant for interpreting fluctuations in fully developed hydro-
dynamic turbulence. From the experimental results that are obtained in a laboratory turbulent flow,
it appears that self-similarity of the partition sums is only reached asymptotically. We demonstrate
that this effect is due to correlations between subsequent refinements in a multifractal description.
We give a way of correcting for the effects of correlations. We analyze an exactly solvable model that
has the correlation depth as a parameter. This model has asymptotic self-similarity and displays a
phase transition behavior in the limit of infinite deterministic refinements.

PACS number(s): 47.27.—i, 02.50.—r, 05.45.+b, 47.53.4+n

I. INTRODUCTION

It is now widely believed that the spatial organization
of turbulent dissipation has multifractal properties [1]. It
implies that the dissipation €(!) inside a volume element
of linear size [ has local scaling behavior with a scaling
exponent a, €(l) ~ [*. There is a whole range of a val-
ues, each of these being distributed in its own fractal set
with fractal dimension f(a). A long stretch of dissipa-
tion on a line that cuts through a turbulent dissipation
field is then thought to contain many realizations of a
fractal process. Naively, each of those realizations would
suffice to compute a complete spectrum f(a) of scaling
exponents. The data requirements for determining f(c)
in an experiment therefore seem to be quite modest. This
is quite surprising in view of the extreme data require-
ments for measuring the scaling of turbulent structure
functions. The structure function Gp(r) is defined as
Gp(r) = ([Au(r)]P)z, where Au(r) = u(z + r) — u(x)
is a velocity difference over a distance r. The structure
function has scaling behavior Gp(r) ~ r¢(P). A depend-
able estimate of {(p) for p ~ 10 needs millions of integral
length scales [2].

Although determination of the exponents « of the dis-
sipation field may be done from a few integral length
scales, the resulting f(a) was shown to fluctuate wildly
from sample to sample [3]. It was realized that averag-
ing the f(a) determined from intervals stretching a few
integral length scales was not a proper way of analyzing
these fluctuations [4]. The crucial point is the order of
performing averages and taking logarithms.

In order to appreciate this, let us recall that the spec-
trum f(a) of scaling exponents is determined through
the partition sum

Pla7) = o 30, )
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where the sum is over the dissipation integrated over el-
ements ¢ of a covering of linear size [. In the limit of
vanishing ! (infinite refinement) the condition I = 1 sin-
gles out a function 7(gq) that is related to f(a) through
a Legendre transformation. The key point is that the
partition sum should be averaged over many different re-
alizations of the fractal process and not the function 7(q).
The ensemble average of the partition sum then defines
a function 7(g) through

(Zaw)=ro, 2

T

where the angular brackets denote the ensemble average.
The definition has the consequence that f(a) can become
negative. Negative dimensions are associated with a val-
ues that occur less than once in a typical ensemble mem-
ber. As pointed out in Ref. [5], direct ways to determine
f(a) through the processing of histograms of local scal-
ing exponents will have trouble when f(a) < 0 because
the chances of encountering the corresponding scaling ex-
ponents actually decrease when decreasing the scale I. A
quite interesting solution to this problem was suggested
by Chhabra and Sreenivasan [5], who proposed to evalu-
ate the averaged partition sum in Eq. (2) at a fixed scale
using the method of multipliers.

In order to understand this method we realize that in
the standard experimental setup, the turbulence dissipa-
tion is measured on a line. Imagine that a linear inter-
val of length [; is cut into a pieces of length I = [y /a.
The question then is about the ratio of the integrated
dissipation on the daughter interval I, to that of the
mother interval l1, m;; = €;,;(l2)/€;(l1), where the in-
dex 7 = 1,...,a points to a particular daughter interval
of l; and the index j points to a given mother interval.
The multipliers are the numbers m; ; of such a parti-
tion. The following argument demonstrates that multi-
pliers have scaling properties if the multiplier m; ; is not
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correlated with the dissipation €;(l;).
To this aim the ensemble-averaged partition sum Eq.
(2) is written as

1@ <Z e;{j(lz)>
=D (mi; ()
=2 (mh 3 (W) = o mH 0, )

where we have used the absence of correlation between
multiplier m; ; and mother dissipation ¢; to factorize the
average product into the product of averages. Therefore,

<img> =g (@), )

The partition sum in Eq. (4) is at a fixed scale, but the
derivation of Eq. (4) has assumed the scaling behavior
of the full partition sum [Eq. (2)]. According to Eq. (3),
the scaling function 7(g) can be computed at any number
of partitions a and does not depend on a (a is called the
base of the multiplier distribution). The use of multipliers
to analyze self-similar facets of turbulence has received
considerable attention in the turbulence literature [6]. In
particular we would like to point to the pioneering work
of Novikov [7].

It was found in experiments that even in high Reynolds
number turbulence the function 7(g) still has a weak de-
pendence on the base a [3]

K(q) (5)

Ta(q) = 7(g) + Toga’

Therefore, the fractal set that is associated with turbu-
lent dissipation displays only asymptotic scale invariance.

Figure 1 shows the result for the scaling function f(a)
in a turbulent air flow (the experiment is detailed in
Sec. IV). The function f(«) was determined from mea-
sured functions 7(q) at values of the multiplier base a,
a=2,...,9. The scaling functions that were directly de-
rived from the experiment are shown in Fig. 1(a). They
have been corrected in Fig. 1(b) using a correction func-
tion K(q) as in Eq. (5). The corrected scaling functions
show a significantly smaller variation with a than the raw
results in Fig. 1(a), thus demonstrating the relevance of
Eq. (5) for experiments.

Because of its importance for analyzing turbulence ex-
periments, it is necessary to have a complete understand-
ing of the emergence of correction functions as in Eg.
(5). This is the prime goal of this paper. We will argue
that asymptotic self-similarity [such as that in Eq. (5)]
is a direct consequence of nonzero correlations between
multipliers at different refinement levels. In Sec. II we
will discuss analytically solvable generalizations of ran-
dom Cantor sets that display correlations between sub-
sequent refinement levels. The strength of these corre-
lations depends on a parameter in the model. At one
extreme value of this parameter, the correlation is com-
plete and refinement is deterministic after it has been

seeded randomly. At the other extreme, subsequent re-
finements are completely independent. We will show that
in the limit of infinite refinements a phase transition phe-
nomenon arises when correlations are complete. Section
IT highlights the key results of our analysis. Mathemati-
cal detail is diverted to the Appendixes.

It turns out that there is a simple relation between
the function K(gq) and the extent of the correlations. In
Sec. III we discuss the way in which the scaling function
7(q) is derived from measured distributions of multipli-
ers. Finally, in Sec. IV the results of an experiment in
laboratory turbulence are given. We conclude with a dis-
cussion of the results in Sec. V.
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FIG. 1. Measured multiplier scaling functions of turbulent
dissipation f(a) at scale r/n = 570 for bases ranging from
a =2 to a = 9. The dissipation was measured in a turbulent
jet at a Reynolds number Ry = 8 x 10%. (a) Without taking
into account the asymptotic correction function K(g). (b)
Lines, with correction function K(g) computed from a = 2, 4;
dots, results from Chabbra and Sreenivasan [3] that were ob-
tained in atmospheric turbulence.
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II. RANDOM FRACTALS WITH FIXED SCALES

Let us consider fractals that randomly redistribute the
measure when the scale is reduced. In our model we gen-
erate subintervals upon descending the cascade by suc-
cessively halving the original interval. So at level ¢ the
fractal consists of 2° intervals of length 2~%, which to-
gether still cover the unit interval. While each interval
at level i—1 is split up into two half, the left half inherits a
fraction z; and the right half a fraction 1 — z; of the total
measure of the original interval. To proceed to refinement
level n, we need n stochastic variables z;,i = 1,...,n,
which are drawn from a simultaneous probability distri-
bution P(zi,...,z,). We emphasize the usage of the
joint probability distribution function as we will concen-
trate on correlations between successive z; and z;,,. We
will always impose the nonessential condition that z; be
distributed uniformly.

The partition function of the random fractal built up
this way is given by

-
Tn(q,m) =277 pl;, (6)
i=t

with p, ; the measure of the jth interval at level n. It
has the form

Pn,j =T1T2 - Tq (7)

with r;, = z; or 1 —z;, ¢ = 1,...,n. The sequence of z;
and 1 — z; in the product Eq. (7) is as the sequence of 0
and 1 in a binary expansion of the index j. The scaling
function 7,(g) at level n follows from the condition

(Tn(g,mn)) =1 (8)
Tal(g) = —1— %logz Z(pi’,,j) ~ 9)

The averages (pj ;) are to be determined from the joint
probability distribution P(z1,...,z,). By a conspicuous
choice of this distribution we can adjust the degree of
correlation between subsequent z; and z;,;. We will use
the standard correlation function to gauge the correlation
strength

_ (Tiwar) — (xs) (@ar) .
[((22) — (2:)2) ({z2) — (war)2)]"/

For the models that we consider, the correlation function
behaves as

Ci, )

(10)

C(i,i") ~ exp(—|i — i'| /), (11)

where we call £ the correlation depth. In the follow-
ing subsections we consider three cases: complete inde-
pendence of z; and z;,,, zero correlation depth ({ =
0) (Sec. IT A); complete correlation, infinite correlation
depth (£ = o) (Sec. IIC); and intermediate correlation

depth (0 < £ < 00) (Sec. IID).

A random redistribution of the measure is but one way
of constructing Cantor-like random fractal sets. A com-
plementary way is to endow two subintervals with exactly
one-half of the measure but to choose their lengths ran-
domly [8]. The analysis of these random length models is
undertaken in Appendix A. The results are very similar
to those of random measure models. The conclusion will
be that it is the correlation between levels, rather than
the detailed refinement process, that determines the gross
structure of the scaling spectrum.

A. No correlation

In this case we take the numbers z; to be completely
independent. Then the simultaneous probability distri-
bution factorizes

P(z1,...,z,) = P(z1) -+ - P(zy). (12)
‘We take the distributions P(xz;) to be uniform on the unit
interval for all i. The product p} ; = r{---71 involves
factors z and (1—z;)?, which have identical expectation
values

1

(z?) = /01 zldzr = o = /01(1 —z)dz = ((1 — z)9),

(13)

where z denotes any of the z;’s. Using this symmetry
result and Eq. (12) we obtain for each averaged mem-
ber <p3., ;) of the partition sum the simple j-independent
expression

o= () - (14)

Therefore,

é@:’.,,-) -(-4)" (15)

Substitution of Eq. (15) into Eq. (9) yields, irrespective
of the value of n,

7(q) = —1 +logy(g + 1), (16)

with the companion spectrum f(a) of scaling exponents
given by

f(a):l—a+$(1+lna+lnln2) (17)
and drawn in Fig. 2. For a | 0 we have f(a) ~ Ina, while
for « = oo, f(a) ~ —a. The spectrum is negative for
small and large a values and positive for intermediate
values. The absence of correlation between successive
refinement levels leads to the absence of the n dependence
of 7(q) and f(a). A similar cascade but with discrete
probabilities has been given in [9].
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FIG. 2. Scaling function f(a) of a binary random multi-
plicative process without correlation between successive re-
finement steps.

B. Self-averaging

The scaling functions of Egs. (16) and (17) are the
result of ensemble averaging. An infinite product p:‘h ;=
rird ... rd with randomly chosen values z; is already an
average in itself. The question is if this “self-average” is
the same as ensemble averaging. Self-averaging implies

that instead of Eq. (8), the expression

2"
Ta(g,m)=2""Y pl, =1 (18)
j=1

is used to obtain 7,,(¢). Because of the special structure
of the p, ; we have

n

2P =1+ (-2, (19)

=1

Taking logarithms in Eq. (18) we find
_ 1 - q PRRY
Ta(g) =~ ;logz [2f + (1 —2:)7]. (20)

Since the z; are independently drawn from the same uni-
form distribution, the right-hand side of Eq. (20) can,
in the limit n — oo, be viewed as the averaging of
log, [z + (1 — z;)%] over the levels of the cascade. Self-
averaging thus leads to the expression

J

Fala) = fl@)+2+ L -[1+Inln2+lna], 0<a<l
T f(@) + s 1+ In(2In2) + In(e — 1) + Inw], o> 1

For finite n, therefore, the function f,(a) can take on
negative values. The f,(«) spectrum is drawn in Fig. 3
for several n values. The convergence of f,(a) to f(«)
is O(1/n) and thus slow. At finite resolution one might

(q) = —/0 log, [¢9 + (1 — 2)7] da. (21)

The resulting f(a) is nowhere negative and symmetrical
around the point & = 1/1n2. Therefore, self-averaging is
essentially different from ensemble averaging.

C. Complete correlation

In this case the z;’s are identical z; = 23 = --- = z,,.
At all levels one and the same stochastic variable, say,
z, is used. The simultaneous probability distribution
P(zy,...,x,) degenerates to a univariate distribution
P(z), for which we again take the uniform distribution
on the unit interval. The partition sum in Eq. (6) can be
written as

Soph; =lat+ (1) (22)

Ensemble averaging leads to the integral

<Zp‘i,j> =I.(9) = /O [#¢+ (1 —2)"dz.  (23)

For large n reliable approximations for this integral can
be derived by expanding the factor [z? + (1 — z)?] around
the value of  where the integrand reaches a maximum.
The analysis is explicated in Appendix B and its result
is

7(q) + -};l(logzq —1) + Llog, m, g>1
Ta(q) = § 7(q) + 35 logy[g(1 — q) /7] + 5 log, m,
0<g<l1
(24)
with
= Jmn@={o 25, @

In the limit of infinite refinement, therefore, the func-
tion 7(q) is no longer differentiable at the point ¢ = 1 and
exhibits a phase transition phenomenon. The companion
spectrum of scaling exponents

is piecewise linear and always positive. At any finite n,
fn(a) can be found from the continuous Legendre trans-
formation of Eq. (24),

(27)

'therefore be easily misled to conclude the presence of neg-
ative dimensions. These negative dimensions are merely
finite-size artifacts.

An important conclusion from the present analysis is
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FIG. 3. Scaling functions f,.(a) of a binary random mul-
tiplicative process with complete correlation between succes-
sive refinement steps. Solid lines, number of refinement steps
ranging from n = 2 to n = 16; dashed line, asymptotic scaling
function (n — oo). The asymptotic scaling function shows a
phase transition phenomenon.

that for large n the function 7,(g) takes on the form

logyn

(@) =7(0) + - Ki(0) + <2 Ky(g). (28)

n
Nonzero functions K (gq) and K2(q) are the consequence
of nonvanishing correlations between refinement levels.
For the present case K;(g) = log, ¢—1, and K>(g) = 1 for
q > 1. We will demonstrate that these functional forms
that correspond to the case of complete correlation are
“maximal.” In the case of only partial correlation, the
corresponding functions are at a given value of ¢ always
smaller than the present functions.

The scaling functions 7,,(g) are only defined for ¢ > 0.
Consequently, the complementary scaling function f(«)
is only defined to the left of its maximum. One-sided scal-
ing functions are also found in the description of clusters
that are grown by diffusion limited aggregation [10].

D. Finite correlation depth

In this case we introduce a simultaneous probability
distribution that will lead to an exponentially decaying
correlation function. The essential idea is to make use of
the equality

P(xy,...,xz5) = P(xy | 1, .y Tn—1)P(z1, ...

,$n_.1).

(29)

with P(x, | z1,...,2p_1) the conditional probability dis-
tribution of z,, given the values of z4,...,z,_;. We as-
sume that each x; is only conditioned on the preceding
z;—1. This Markovian condition can be expressed as

P(z; | z1,...,2i—1) = P(z; | zi—1). (30)

Applying Egs. (29) and (30) repeatedly we find

P((I)l, ‘e ,.'L‘.n) = P(wl)P(iL‘z | (Bl) . P(CL’n | .’L‘n_l). (31)
This form is extremely appropriate to calculate the en-
sembleaveraged partition sums Ele (py ;) in Eq. (9). We
illustrate this for one term in the summation in Eq. (9),
namely, the one corresponding to j =1

Pna = T1T2 " Typ. (32)

Its average is given by
1 1
(Ph 1) = / dzy =i P(ml)/ dzo zd P(zy | 1) - --
0 0
1
X / dz, 22 P(Tp | Tn-1). (33)
0

Simple recursion rules for the computation of ensemble-
averaged partition sums result if we take the conditional
probability P(z; | z;—1) to be a piecewise constant func-
tion. To this aim we cover the unit interval with a grid
of points k/m, k = 0,...,m, that define intervals with
length 1/m. The normalized conditional probability is
then given in terms of this grid

m—46 if z; and z;_,
are in the same interval
s

v = ;>3 otherwise (34)

P(J), | dti_l) =

for some parameter § with 0 < § < m — 1. The function
P(z; | ;1) is sketched in Fig. 4 for m = 64, z;_;, =
20/64, and & = 32.

L e

Probability

—
T
Il

L L L L 1 1 L 1 1
0'10 0.5 1.0

z

FIG. 4. Conditional probability function P(z; | zi-1) for
a given xz;_1. Probability functions of this form lead to a
cascade with an exponentially decaying correlation function
of the multipliers at successive refinement steps. The condi-
tional probability function is piecewise constant on intervals
of length 1/m. Shown is the case m = 64, § = 32, where z;_1
is in the interval [20/64,21/64]. The number § determines the
height of the spike. The height increases with decreasing 4.
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At the first level the variable z; is selected according
to a uniform distribution on [0,1]. In the case v = 0,
all z;,7 = 2,...,n, are uniformly randomly chosen in the
subinterval with index [mx;_;], where the square brack-
ets denote the integer part. In the case vy > 0, the vari-
able z; has also a nonzero probability v to be outside
the interval [mz;_;]. In Appendix C we prove that the
correlation function for this model is

) 1 ifi=1
C(1,9) = { (1 - L) exp[—(i —1)/€] ifi>1,

where the correlation depth £ = —1/1In(1 — ). The cor-
relation depth is zero for v =1 (i.e., § = m — 1) and is
infinite for v = 0 (§ = 0). The last case is equivalent to
the completely correlated model of Sec. IIC in the limit
m — oo. Therefore this model displays a continuous
transition between the case of completely dependent mul-
tipliers z; and the case of completely independent mul-
tipliers. In Appendix D we derive a recursion rule for
the ensemble-averaged partition sum that can be readily
implemented on a computer.

Figure 5 compares the dimension spectrum f(o) for
the correlation depths £ = 3.413... and £ = 1.413...
(m = 64, 6 = 16 and m = 64, § = 32, respectively) with
the corresponding spectra for the completely correlated
case and the case of uncorrelated multipliers. The con-
vergence of the correlated case is shown by overlaying
the graphs with different n. Evidently, the f(a) func-
tions of the correlated cases are intermediate between
the extremes of uncorrelated and completely correlated
multipliers. The negative dimensions are genuine and are

(35)

-1

0o 05 )

FIG. 5. Solid lines, scaling function of a binary cas-
cade with nonzero correlations between successive refinement
steps. The correlation depths are £ = 1.413 and £ = 3.413
for § = 32 and § = 16, respectively. The value of § is indi-
cated. The number § controls the shape of the conditional
probability function. The strength of correlations increases
with decreasing §. The convergence with increasing number
of cascade steps is demonstrated by overlaying curves com-
puted from n = 3,4,5 and n = 4,8,16 for each §. Dashed
line, cascade with infinite correlation depth (Fig. 3); dotted
line, cascade with zero correlation depth (Fig. 2).

not due to finite size effects.

For a fine cover of the unit interval (large m) and for
v = 0, the model of this section is the same as the model
treated in Sec. I C. Therefore, we expect that both mod-
els have the same large n behavior Eq. (28). We have
found that this is indeed approximately true. The func-
tions K;(g) and K2(q) are shown in Fig. 6 for m = 64 and
values of £ ranging from £ = 16 to £ = 2. They were com-
puted by linearly solving for K;, K2, and 7 from 7,(q)
at three values of n. For Fig. 6 we used n = 3,4, and 5;
larger values of n produced results that were only slightly
different from those shown. At a given value of ¢, K1(q)

FIG. 6. Correction functions for cascades with intermedi-
ate correlation between succcessive refinement steps. The cor-
rection functions are defined in the asymptotic form of the
scaling function as 7.(g) = 7(g) + K1(q)/n+ K2(q) log,(n)/n.
The indicated number § controls the shape of the conditional
probability function. The strength of correlations increases
with decreasing 8. The value of § is 2,4,8, 16,32, respec-
tively. The correlation depth ranges from £ = 1.4 for § = 32
to £ = 15 for § = 2. (a) The function K;(g) that multiplies
the 1/n term in the expression for 7,(q). (b) The K2(gq) that
multiplies the log,(n)/n term.
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and K>(q) are seen to decrease with decreasing correla-
tion depth £. It also appears that at a fixed value of g,
the function K;(g) approaches the maximally correlated
case as K1 ¢=oo — K1(q) ~ 1/€.

In the binary cascades considered so far, random mul-
tipliers in a given ensemble member were induced by
drawing a single random number z,, at each level n. For
turbulence, a more realistic procedure would be to draw
2"~1 random numbers at each level n. Numerical simula-
tions have shown that this procedure gives rise to scaling
functions 7(q) that for ¢ > 0 are indistinguishable from
the scaling functions that are derived in Sec. II.

III. MEASURING MULTIPLIERS

Multipliers of turbulent dissipation at base a are mea-
sured by dividing intervals of length /; into a daughter in-
tervals of length I, (= 1 /a) and computing the histogram
P (m) of ratios m; = €;(I2)/e(l1), i = 1,...,a, where
€:(l2) is the integrated dissipation over the ith daughter
interval. In the models discussed so far, the value of the
base was restricted to powers of 2, a = 2.

It follows from Eq. (4) that the scaling function 7,(q)
is defined in terms of the moments of the multiplier dis-
tribution function

! log (/ z? P(@) (:r:)d:c) . (36)
loga o

As demonstrated in Eq. (3), if the dissipation has scaling
behavior and if the multipliers = at different levels are
uncorrelated, the function 7(g) does not depend on a. On
the other hand, if the multipliers of subsequent levels are
correlated, the function 7,(g) will have an a dependence.
The function 7(q) is nothing else but the logarithm
of the Mellin transform M[P(®)] of the distribution of
multipliers P(®)(z). This transform is defined as

Ta(g) = ~1~

M[P](z) = /0 ~ Plz)z"da; (37)
therefore
(@) = —1- o lEMP@N(+1). (38)

Now consider a cascade with a division into a2 inter-
vals. It can be considered as level 2 of a cascade with
base a, but also as level 1 of a cascade with base a?.
Both views must lead to the same function 7(g). The re-
lation between the two probability distribution functions

P(@) and P(") is given by
2 1
P (2) = / —P@ (z/z) P (z)dz. (39)
o T

The Mellin transforms of the distribution functions in
such a convolution are related as
2

M[PE)] = (M[P(“)]) (40)

Base independence of the scaling functions 7,(g) there-
fore implies a special relation between the distribution
functions corresponding to different values of the base.
For the model without correlation in Sec. ITA, it can
easily be shown that if P(®)(z) is uniform,

PC) (g) = %(—lnm)". (41)

On the other hand, for the completely correlated case
of Sec. IIC, the distribution function at level n is de-
termined by the singularities that result from mapping
a uniform distribution of points on the unit interval
through the functions z*(1 — )% k=1,...,n.

The scaling functions 7(g) and the associated distribu-
tion functions of multipliers are two complementary de-
scriptions of the scaling properties of the turbulent dissi-
pation field. Because the scaling functions for increasing
q are determined by the increasingly higher moments of
the distribution functions, the statistical accuracy of the
distribution functions determines the accuracy of 7(g) at
large q or the accuracy of f(a) at values of a where it is
most negative.

If multipliers of the turbulent dissipation field at dif-
ferent bases a are correlated, the measured function 7,(g)
will depend on the base a. It is demonstrated in Sec. IID
that for the binary (2™- based) cascades considered there,
the large n behavior of 7,,(q) is determined by terms pro-
portional to 1/n and (log, n)/n. We expect that in com-
plete analogy the large a behavior of 7,(q) is approxi-
mately determined by terms proportional to 1/loga and
log(log a)/ log a. For convenience we will retain only the
first term in which case the function 7(g) can be esti-
mated from a measurement at two bases a; and ag,

Tay (@) logay — 74, (q) log as
loga; — logaz )

7(q) = (42)

We will use this expression when analyzing the results of
a turbulence experiment.

IV. EXPERIMENTAL RESULTS

In order to test for the existence of log a corrections in
the analysis of the scaling properties of the turbulent dis-
sipation field we have performed a laboratory turbulence
experiment. The Reynolds number in this experiment is
modest, Ry = 8 x 102, as based on the Taylor microscale
A. A turbulent flow emanated with a mean velocity of
30 m/s from a jet (0.12 m diameter). Velocity fluctua-
tions were measured 2.6 m downstream where the mean
velocity was 11.7 m/s and the turbulent fluctuations had
a rms size of 2.3 m/s. Using a standard hot-wire probe of
size 0.2 mm, a modest number (5 x 107) of velocity sam-
ples was registered and stored. The length of the time
series was approximately 4 x 10° integral scales L. The
12-bit data were acquired with a 33-kHz sampling rate
and using a four-pole antialiasing filter at 16.5 kHz. The
dissipation length scale was n = 8.7 x 107% m and the
Taylor microscale that gauges the extent of correlations
in the flow was A/n = 57.
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In the case that the velocity fluctuations are much
smaller than the mean flow velocity, a time signal from a
stationary probe can be interpreted as a spatial signal on
a line that cuts through the turbulent velocity field [11].
We assumed that this applies to our experiment.

Although the Reynolds number is modest, the velocity
increments of the turbulent fluctuations have a clear scal-
ing behavior that stretches over nearly two decades. This
is demonstrated in Fig. 7, which shows the third-order
structure function G3(r) = ([u(z +r) —u(=x)]3) as a func-
tion of r. In the case of homogeneous and isotropic tur-
bulence, the scaling part of G5 must behave as G3(r) ~ r
[12]. We find that G3(r) ~ r¢, with ¢ = 1.03, which is
slightly but significantly larger than 1.

The dissipation € is a sum of derivatives ¢ =
v E?’j (Ou;/8z;)? of which we measure the term

(0u1/8z1)? by time differentiation of the measured
signal. In the case of isotropic turbulence, (¢) =
150((8u1/08z1)?). As is customary, we assume this re-
lation to hold also for the instantaneous quantities.

Figure 8 shows distribution functions of multipliers
m that were measured by computing the ratio m =
e(l/a)/e(l) for I/n = 570 and @ = 2,3,...,9. The his-
tograms were accumulated by dividing the measured time
series into 2 x 10° intervals of length 1.

The average correlation between the value of the mul-
tiplier at distance [ and that at distance al with a = 2 is
shown in Fig. 9. The correlation function demonstrates
the importance of the Taylor microscale (here A/n = 57)
where it has a minimum. Multipliers of subsequent re-
finements at smaller distances I < A become increas-
ingly correlated. It is expected therefore that the range
over which the scaling function 7(q) is | independent is
bounded from below by the Taylor microscale rather than
by the dissipation scale. Therefore, the scaling dynami-
cal range of multiplier distributions will be smaller than
the scaling range of the velocity increments that is shown
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FIG. 7. Measured third-order structure function Gs(r) as
a function of r/n in jet turbulence. Dashed line, fit of
Gs(r) ~ r¢ with ¢ = 1.03. The scaling range extends ap-
proximately from r/n = 30 to r/n = 10°. The arrow points
to the Taylor microscale.

FIG. 8. Measured multiplier distributions of turbulent dis-
sipation in a jet low. The multipliers m are m = €(r)/e(r/a),
where r/n = 570 and the base a takes the values
a=2,3,...,9, respectively.

in Fig. 7. A similar behavior is shown by the correlation
between the multiplier m = €(I/a)/e(l), a = 2, and the
mother-interval dissipation €(l).

The correlation functions of Fig. 9 were measured for
the situation that the daughter interval was centered in
the mother interval. It is well known that the correla-
tion depends on the relative location of both intervals
[6]. This relative location is expressed in terms of the
homogeneity parameter h

z—z'
h= — 43
I(1-1/a) (43)
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FIG. 9. Correlation between multipliers at successive re-
finement steps and between multipliers and mother interval
dissipation measured in a turbulent jet using refinements with
base a = 2. Dots connected by a dotted line, correlation be-
tween multipliers at » and ra; dots connected by full line, cor-
relation between multiplier and mother dissipation at level r.
The correlation functions show a minimum at approximately
the Taylor microscale (A/n = 57). The arrow points to A.
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where = and z’ are the centers of the mother interval,
here with length la and a daughter interval with length
l, respectively. The value of h ranges from —1/2 to 1/2
with the centered daughter interval at h = 0. Figure
10 shows the h dependence of the (m,e€) correlation as
a function of & for a range of bases a. The correlation
function is strongly inhomogeneous and shows a marked
asymmetry. We believe that this asymmetry is signif-
icant; it perhaps points to deviations from the frozen
turbulence hypothesis. Clearly, the inhomogeneous na-
ture (i.e., h dependence) of correlations and their scale (1)
dependence is not accounted for in our cascade models.

Our central experimental result is the approximate va-
lidity of Eq. (5) to describe the asymptotic self-similarity
of multiplier distributions of turbulent dissipation. It is
demonstrated in Fig. 1, which shows the scaling func-
tions measured at {/n = 570. Figure 1 also shows good
agreement with the results of Ref. [3] that were obtained
in the atmospheric boundary layer. The correction func-
tion K (g) was obtained from measured 7,(q) at a = 2,4.
Figure 11 shows the function K(gq) and compares it to
one obtained from scaling functions at a = 2,8. The re-
sults demonstrate that the asymptotic self-similarity of
turbulence is, to a good approximation, described by Eq.
(5).

In the case of strict self-similarity in the inertial range,
the scaling functions 7,(g) should not depend on the
inertial-range scale ! (cf. the length of the mother in-
terval) where they are measured. Probably because our
Reynolds number is modest (Ry = 8 x 10%), we have
found a significant variation of 7,(g) with I. This is
demonstrated in Fig. 12, which shows the variation of
f(a) that was computed from measured 7,(q) at a = 2
and [ ranging from {/n = 1150 to I/ = 72. The [ depen-
dence that we find agrees with results by Van Atta and
Yeh [6] obtained in atmospheric boundary layer flows,
but it disagrees with those of Chhabra and Sreenivasan

Correlation

FIG. 10. Dependence of the correlation between multiplier
€(r)/e(r/a) and mother dissipation €(r) on the relative posi-
tion of the r/a subinterval at r/n = 570 and base a ranging
froma=2toa=29.

1.0 T T T T T T + T .

FIG. 11. Correction function K(q) defined in 7a(q)
= 7(q) + K(q)/Ina, measured in a turbulent jet flow at
r/n = 570 at a = 2,4 (solid line) and a = 2,8 (dashed line).
This function is used to correct for finitesize effects in f(a)
due to correlations between multipliers.

[3] which were also obtained in an atmospheric boundary
layer but show scale independent multiplier distributions.
The results of Fig. 1 were obtained for a value of [ in the
middle of the inertial range shown in Fig. 7.

The scaling range of multiplier experiments is smaller
than the inertial range of structure functions as it is
bounded from below by the Taylor microscale. Because
the inertial range widens with increasing Reynolds num-
ber, we expect to reach the scale independence of 7(q)
at much larger values of R). This is clearly a point of
further research.
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FIG. 12. Scale dependence of f(a) that was measured in
a turbulent jet experiment. The scaling function f(a) was
determined from multipliers at base ¢ = 2 and scales [,
l/n = 1150, 580, and 72, respectively.
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V. CONCLUDING REMARKS

Multifractals provide a rich framework to analyze tur-
bulent fluctuations. Clearly, turbulence gives rise to ran-
dom fractals and one may expect fractal dimensions of
proper long-time averages to become negative. A key
result of our work is that due to the presence of cor-
relations, the scaling behavior of these fractals is often
only asymptotic. Incidentally, the existence of logarith-
mic preasymptotic factors is a severe impairment of a
scaling approach to multiplier distributions.

We do not claim to have designed cascade models for
turbulence. The purpose of our models has been to
demonstrate the effect of correlations on scaling. How-
ever, an obvious conclusion is that multiplier correlations
in turbulence are not complete as for the model of Sec.
IIC [13].

A quite subtle problem in the interpretation of experi-
mentally measured dissipation in terms of multipliers m;
is that the numbers m; must satisfy the trivial normaliza-
tion condition Y ;_, m; = 1. The form of measured mul-
tiplier distribution functions P(®)(m) is determined both
by this normalization condition and by self-similarity
that relates P(®)(m) and P®(m) through their Mellin
transforms. As seen in Fig. 8, the maximum of P(®)(m)
shifts to smaller m when a increases. This shift is due
to the satisfaction of the normalization condition. The
normalization requirement induces correlations between
my,..., Mg at a given level. These correlations should be
distinguished from the level to level correlations that are
considered in this paper. We have found it (numerically)
perfectly possible to construct self-similar cascades whose
multipliers satisfy the normalization condition [14].

Measuring turbulent scaling through multipliers im-
plies averages over many realizations of a fractal process
and the question of statistical accuracy is as important
as in the case of high-order structure functions. Con-
vergence of high moments of the multiplier distribution
requires the accumulation of very long time series. The
advantage of the multiplier approach is that the conver-
gence problems are explicit. The question of statistical
convergence is much harder to deal with in the stan-
dard approach where an average over scaling functions
is taken.

Of course, the measurement of time series in a single
point provides only very limited information about the
turbulent flow field. An obvious extension is the simul-
taneous measurement of velocity fluctuations in many
points of the flow field. These measurements and their
interpretation in terms of scaling functions are a goal of
current research.
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APPENDIX A: RANDOM SCALES

In [8] a multifractal is studied with a deterministic,
trivial redistribution of the probability and a stochastic
refining of the intervals. Here we briefly show that also
in this case the correlation between successive refinement
steps crucially determines the 7(g) and f(«) scaling func-
tions. At each refinement level n two stochastic variables
z, and y, are introduced with z,,,y, > 0 and x,+y, < 1.
Each interval at level n is divided into two smaller ones
of lengths z,, and y,. The measure of the mother inter-
val is distributed equally over the daughter intervals. At
level n the fractal thus consists of 2™ intervals, which all
together cover a fraction of the unit interval and each in-
terval has measure 27". The partition function is given
by

T(g,7) =27 1.7, (A1)
i

with I, ; the length of the jth interval at level n. We
have

lnj =T1T2...Tn (A2)
with r; = z; or r; = y;, i = 1,...,n. To obtain the
scaling function 7(g) the averages (I7) must be calcu-

lated. They are determined by a joint probability distri-
bution P(z1,¥1,---,Zn,Yn). To show the strong relation
between the correlation structure and the scaling expo-
nents, we consider the case where the r; from different
levels are independent and, at the other extreme, the case
where the r; are the same for each level.

We first deal with the case, not treated in [8], that z;
and z;/, on the one hand, and y; and y;/, on the other
hand, are uncorrelated for different 7 and i'. Here the
relevant distribution function is P(z;,y;). The probabili-
ties are taken independent of 7 and uniformly distributed
on the triangle z;,y; > 0 and z; + y; < 1. From the
symmetry between z; and y; we conclude that

((rarg =) ™7) = (207",

which is easily calculated:

(z177) = 2/01 dryz,y 7 /01—1‘1 dy, = Zl—_h
(A4)

(A3)

It leads to the restriction 7 < 1. The averaged partition

function is thus given by
(Tn(g, 7)) = 277 D[(1 —7) (2~ 7)] ™ (A5)

Equating this expression to unity we find that the scaling
exponents are independent of n and given by

T(q) = g {1 + [1 - 2(1 - 21—‘1)] 1/2}

§(1—21”5J‘).
2

Q

(A6)

In the last line we made a small approximation and chose
the minus sign that corresponds to positive a. The cor-
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responding f(a) spectrum is

f(a)=——g+a{1+§2~ [1—1na+ln(zln2)]}.

(A7)

The spectrum of dimensions is negative for small and
large values of a. It is similar to the dimension spec-
trum for the case of random measure refinements that is
treated in Sec. IT A.

The case of complete correlation between levels is
treated in [8]. In this case we set z; = z and y; = y,
i = 1,...,n. The probability distibution P(z,y) is uni-
form on the triangle z,y > 0, z + y < 1. The averaged
partition function is given by

(Tr(g, 7)) =27"1,(q,7), (A8)
with the integral I,,(q,7) defined as
1 1
In(g,7) = / dw/ dy(z™" +y~ )" (A9)
0 x
From the condition
(Tn(g, 7)) =1, (A10)

an implicit equation for the scaling exponent 7,,(g) is ob-
tained. The evaluation of the integral I,,(q, 7) is intricate
and several cases have to be investigated carefully. For
7 > 0 (i.e., ¢ > 1) the integrand reaches a maximum in
(z,y) = (0,0) and the integral diverges unless 7 < 1/n.
So, in the limit n — oo we have 7 = 0, ¢ > 1. For
-1 <7 <0 (ie, 0 < g < 1) the integrand reaches a
maximum 2"("+1) in (z,y) = (1/2,1/2). Expansion of
the integrand around this maximum up to first order re-
sults in the relation

2n[‘r+1—q+% logy(—d/nT)] _ 1, (All)
where § is an arbitrary, positive number, § < 1. From
this we conclude that

1
nln2

Tn(q) = 7(q) + [Inn(1—gq) —Ind] (A12)

with

7(q) = q¢— 1. (A13)
Therefore, this model has the same asymptotic f(a) spec-
trum as the model of Sec. IIC, where we have kept the
scales fixed but have randomly distributed the measure.

For 7 < —1 (i.e., ¢ < 0) the integrand reaches a max-
imum value of 1 in (z,y) = (1,0). Expansion of the
integrand around this maximum up to first order results
in

1

- = 2qn/2+1 .
Ta(q) n
We note that Egs. (A13) and (A14) do not yield the same

answer for ¢ — 0, indicating that the thermodynamic

(A14)

FIG. 13. Scaling functions f.(a) of a binary random
multiplicative process with refinement of lengths. Solid
lines, completely correlated refinement steps, number of steps
n = 2,4,8,16, respectively. This scaling function has the
same asymptotic (n = co) limit as the one in Fig. 3, dashed
line, independent refinements.

limit n — 0 does not exist in this case. The intricacies
of this situation are discussed in [8].

The spectrum of scalings f(a), both for uncorrelated
refinements and for completely correlated refinements at
various values of n, is shown in Fig. 13. The spectra
bear a striking similarity to those of Fig. 3, which were
computed for the case of a binary cascade with measure
refinements. We conclude that the general behavior of
the dimension spectra is apparently determined by the
level to level correlation rather than by details of the
refinement process.

APPENDIX B: RANDOM MEASURE
WITH COMPLETE CORRELATION

Here we sketch the evaluation of the integral I,(q) in
Eq. (23) for large n. Note that the obvious restriction
q > 0 applies. The behavior of the integral for large n
follows from expanding the integrand around z = % Let
z = 1(1+1); then

L(g) = (%)" [

with h(t) = (1 + )9 + (1 — t)9.

We have to discern the cases ¢ < 1 and ¢ > 1. For ¢ <
1 the function h has an (absolute) quadratic maximum
h = 2 at t = 0. Because h is raised to a large power,
only a very small neighborhood of ¢ = 0 contributes to
the integral. Therefore, (h/2)" = [1 + g(gq — 1)t2]™ and

1\ ™! la1—g))~*/2 -
I.(q) =~ (5) 2"/0 [1 +q(g—1)t ] dt.

(B2)

(B1)
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After the transformation t' = t/n'/2? we recognize an ap-

proximation to an exponential function in the integrand
and

x 1/2
L(g) ~ 2°0~9) [—] . B3
(@) e (83)
The resulting scaling function is
Inn
(@) =q—1- — 2C(q)+ g’ (B4)

with C(q) = {In[r/q(1 - q)]} /2.

For ¢ > 1 the function A has a maximum h = 29 at
t = 1. Because h is raised to a large power, only a very
small neighborhood of t = 1 contributes to the integral.
Therefore, [h/(29)]" =~ [1 — ¢(1 —t)/2]™ and

L(g) ~ (%)_ 2 [ i(w[l — g1 - t)/2"dz. (BS)

After the transformation t' = 1 —t/n we recognize an ap-
proximation to an exponential function in the integrand
and

4
I, ~ — B6
(@)~ (B6)
The resulting scaling function is
2 Ing Inn
=-= . B7
7n(9) n+nln2 nln2 (BT)

APPENDIX C: CORRELATION STRUCTURE

The model of Sec. IID with piecewise constant condi-
tional probabilities allows the analytical computation of
correlation functions and the numerical computation of
partition sums in terms of simple recursive formula’s.

The correlation function C(i,7') in Eq. (10) is most
appropriately evaluated in terms of a generating function
F, defined by

1 1

Fo.(q1,---1qn) = / dz,z{ / dzoxP P(zz | 1) ...
0 o
1

x /0 dznzd P(zn | Ta_1).  (C1)

From the symmetry between the z;’s we have, for ¢ =
2,...,n,

1
(@) = (&) = F1(1) = 3. (C2)
Similar symmetry arguments yield
1
(2F) = (2}) = Fu(2) = 3 (C3)

Because the fractal is built up in a strictly recursive man-
ner, we have C(: + j,i’ + j) = C(i,7') for all positive
integers j. Substitution of Egs. (C2)-(C4) into Eq. (10)

yields
C(1,n) = 12F,(1,0,...,0,1) — 3. (C4)
It therefore remains to calculate the factor
(z1 ) = Fn(1,0,...,0,1). (C5)

We recall that the conditional probabilities P(z;|z;—1)
of the piecewise constant model are defined as
P(:E,; | :E,'_l) =5+ m(l — ’Y)‘Si,i—ly (CG)
where the Kronecker § is unity if ; and z;_; are in the
same interval and zero elsewhere. For clarity we will
first derive the correlation function for the trivial case
~ = 0. In this case z1,...,z, are all in the same interval.
The integral over x; in Eq. (C1) therefore reduces to a
summation over all m intervals of the grid

m m
Fa(1,0,...,0,1) = Fa(1,1) = ) (ef — 6_1)%, (C7)
k=1
where €, = k/m. Using the relation
Z k2 = Zm(2m? 4+ 3m + 1), (C8)
we obtain that
(e120) = Fa(L,1) = 3 [1= s (c9)
T1ZTn) = L'2(1, - 3 (2m)2 .

Substituting Eq. (C2), (C3), and (C9) into the definition
Eq. (10) of the correlation function, we obtain

1 n=1
C(l’")={1——2, n>2.

The correlation function C(1,n) jumps from 1 to 1—1/m?
at n = 1 and the correlation length is infinite.

For the more interesting case y # 0 it is easily seen that
(z;) and (z?) are again given by Egs. (C2) and (C3). The
average (z1 z,) follows from Eq. (C5), but the reduction
Eq. (C7) no longer holds in this case. Careful evaluation

(C10)

of F,(1,0,...,0,1) for increasing values of n reveals a
recurrent structure. If we define a function
4 1
= |l — —— C11
6n =3 [1- g (1)
the F,, can be expressed in terms of G,
1
Fy(1,1) = 5[y + (1= 7)Gnml, (C12)
1
F3(1,0,1) = 7 {v+ (1 =7y + (1 = 7)Gml]},

and, in general, F,, 1 is obtained from F;, by replacement
of the factor G,,, by the factor y+(1—+)G,,. Substitution
of the F, obtained this way into the right-hand side of
(C4) yields the correlation function for n > 1

C(l,n)=(1—-4)""* (1 - i) . (C13)

m?2
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This can be written in the more convenient form

1, n=1
CLm=10a-dew(-22), n>1 (Y
with the correlation depth £ defined as
— (C15)
~ In(1-9)

APPENDIX D: RECURRENCE RELATION
FOR THE PARTITION SUM

There are no analytical expressions for 7(q) available
for the cascade model with intermediate correlations in
Sec. IID. However, the piecewise constant form of the
conditional probability distribution function allows for
a very efficient numerical procedure. We will derive a
simple recursive form for the computation of the partition
sum. The procedure is shown first for the j = 1 term in

Eq. (9),
1 1
(Ph1) = / dzy 1 P(z,) / dzy 2l P(zy | 1) - -
0 )

x/(; dz,, 21 P(z, | Tn-1). (D1)

Other terms in Eq. (9) will have one or more z{ replaced
by (1 — z;)9. Because the first z; is (unconditionally)
drawn from a uniform distribution, we write the integra-
tions as

<pi,1) :/0 dzl :EL{ Fn—l(xl’q)- (D2)
|
Fi(k,q) = (741-—1) [vSo + Atk (q)]
_ 1 L, M
= 5T [ + cVtu(a)]

Fika) = g (7 1S3+ 3S1@)} + -

1
= (q+1)2 {’7 [C(()l)So + 651)51((1)] + Jecp )tk(q) + 'ycll)tk(q)}

!
~ (g+1)?

F3(k,q) = (‘:1— {’Y [ %) So + 0(2)51(Q) + 0(2)52(‘1)]}

= s 1

e + cVta(q) + SV (q) +

The function F,_1(z1,q) does not depend on the value
of z; itself, but only on the interval containing z;, say,
[k, €k—1] with € = k/m. We may therefore write
F,_1(z1,9) = Fn_1(k,q). The integral in Eq. (D2) then
reduces to a summation

(Pr1) = m(q+ i) 2 Ztk(q w1k, q) (D3)

with tx(q) = eIt — €2t1.
It turns out that F,,_1(k,q) is a polynomlal in tx(g) of
degree n — 1,

n—1
1 N
Fn1(k,q) = @1t > " Vti(a)- (D4)
1=0

The coeflicients c,(c") can be calculated recursively. For

that purpose it is convenient to introduce the notation

Sulg) = 3.7+ (q).
k=1

The number ¥ is just the height of the spike in Fig. 4
above the background probability . From this definition
we also see that So(¢g) = So = 1. For later convenience
we shall consequently write down this term. Substitution
of Eq. (D4) into Eq. (D3) yields

(D5)

(ph1) = (D6)

n—1
1 3 (n—1)
F, = \ g .

(@) (g+ 1)~ i=0 “ 5@

The coefficients cz(.") at level n can be expressed in terms
of those at level n — 1. To illustrate this we evaluate

F,(k,q) for n =1,2, and 3

i 1)’Ytk( q)Fi(k,q)

(D7)

[ + cPtua) + 782 (a)]

( _:1)2 7tk(’1) F2(k q)

(3’t2(<1)] :
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We observe the following substitution rules. For n =1
we have

CS)I) = IYSO )

=% (D8)

and forn > 1

n—1
c§) =7 > " Vsia),

1=0

(D9)

M =50 i=1,. n -1

The remaining task is now to compute the other terms
in the partition sum that have one or more z replaced by
(1 —z;)9. It is a simple observation that these terms are
automatically included by replacing tx(q) in the above
expressions by

tr(a) = tr(q) + tm+1-x(9)- (D10)
The sum S,(g) is now taken over fx(q) with the obvious
consequence that now Sy = 2.
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